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Abstract
The formula for differentiation of functionals A[ρ] under conservation
constraints of the form

∫
f (ρ(x)) dx = K , and some essential properties of

this K-conserving functional differentiation, are derived. A generalization to
include treatment of time-evolution is also given.

PACS numbers: 02.30.Sa, 02.30.Xx, 05.10.−a, 31.15.Ew

Functional differentiation plays an essential role in all branches of physics. One of its basic
occurrences is in the determination of extrema of physical quantities A with respect to some
distribution function ρ(x), functional derivatives appearing in the Euler equation belonging to
the given extremizing problem,

δA[ρ]

δρ(x)
= 0. (1)

In most cases, only certain kinds of variations of the variable ρ(x) of A are allowed, due to
the given physical laws or to a restricted domain of ρ(x) in the definition of A[ρ], that is,
various constraints have to be taken into account while making variations, or differentiating.
Restricting the domain on which differentiation of a functional is made may go with the
modification of the differentiational rules. In the determination of extrema, the well-known
Lagrange method is a satisfactory tool to take a constraint

C[ρ] = 0 (2)

into consideration by a multiplier λ,

δA[ρ]

δρ(x)
− λ

δC[ρ]

δρ(x)
= 0 (3)

as the value of λ is determinable by adjusting it so that the solution ρ(x; λ) of the
Euler–Lagrange equation (3) satisfies the constraint. However, the method of Lagrange
multipliers does not provide a general, full treatment of inclusion of constraints into functional
differentiation, which can be especially relevant in physics in nonequilibrium or time-
dependent problems, as was demonstrated recently in [1, 2] in the case of problems of the
density-functional formulation of quantum mechanics [3].
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In [1], the analytical formula that describes how the form of a functional derivative changes
due to the constraint of norm conservation of the functional variable,∫

ρ(x) dx = N (4)

has been derived:
δA[ρ]

δNρ(x)
= δA[ρ]

δρ(x)
− 1

N

∫
ρ(x ′)

δA[ρ]

δρ(x ′)
dx ′ (5)

showing how the functional and the constraint together explicitly determine an additive term
modifying the unconstrained functional derivative. The substantial property of this so-called
number-conserving functional differentiation that it ruins the symmetry of multiple functional
derivatives δ

δρ(x)
in their x arguments has been proved [1] to be crucial for the requirement of

causality [4] in the time-dependent density-functional theory [3, 4]. The effect on functional
differentiation of a more restricting and more complicated constraint on the domain of
wavefunctions, namely, the restriction of the domain to wavefunctions that correspond to
some density via the density–wavefunction map of density-functional theory, has also been
pointed out to be unignorable [2], its neglect being pointed out to be the source of error in the
derivation of incorrect results in density-functional theory.

Here, the formula for functional differentiation under a general (local) ‘integral-
conserving’ constraint∫

f (ρ(x)) dx = K (6)

will be presented, together with an extension to include a parameter in which the constraint is
pointwise, ∫

f (ρ(x, t)) dx = K(t) (7)

to treat time-evolution.
To get the desired formula, the idea of [1] leading to equation (5) will be utilized. For this,

as a starting point, finding an appropriate decomposition of ρ(x) is necessary. It is important
to recognize that two essential properties of the decomposition

ρ(x) = N
g(x)∫

g(x ′) dx ′ (8)

make it the right choice to be the basis for the derivation of equation (5): (i) for arbitrary
g(x) it gives a ρ(x) of norm N, (ii) it holds for g = ρ. In the case of a constraint of, e.g.,
f (ρ) = ρn, the appropriate decomposition,

ρ(x) = n

√
K∫

gn(x ′) dx ′ g(x) (9)

arises quite trivially, but not for a general case including entropy conservation, with
f (ρ) = −kρ ln ρ, for example. The general way of decomposing ρ(x) so that the above-
mentioned criteria are fulfilled is

ρ(x) = f −1

(
K∫

f (g(x ′)) dx ′ f (g(x))

)
(10)

with K = ∫
f (ρ(x)) dx, which, indeed, gives equation (6) for any g(x), and holds for g = ρ.

Having equation (10), the K-conserving differentiation of a functional can be traced back
to an unconstrained partial functional differentiation, similar to the case of N-conserving
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differentiation [1], as(
δρ(x ′)[g,K]

δg(x)

)
K

∣∣∣∣
g=ρ

= δρ(x ′)
δKρ(x)

(11)

or more generally,(
δA[ρ[g,K]]

δg(x)

)
K

∣∣∣∣
g=ρ

= δA[ρ]

δKρ(x)
(12)

since any variation of g(x) at ρ(x) conserves
∫
f (ρ(x)) dx and g(x) can run on ρ(x) (of K ).

Thus, as(
δρ(x ′)
δg(x)

)
K

= 1

f (1)(ρ(x ′))
K∫

f (g(x ′′)) dx ′′

(
f (1)(g(x ′))δ(x ′ − x)

(13)

− f (1)(g(x))∫
f (g(x ′′)) dx ′′ f (g(x ′))

)

f (1) denoting the first derivative of f , and(
δA[ρ[g,K]]

δg(x)

)
K

=
∫

δA[ρ]

δρ(x ′)

(
δρ(x ′)
δg(x)

)
K

dx ′ (14)

δρ(x ′)
δKρ(x)

= δ(x ′ − x) − f (1)(ρ(x))

K

f (ρ(x ′))
f (1)(ρ(x ′))

(15)

and

δA[ρ]

δKρ(x)
=

∫
δA[ρ]

δρ(x ′)
δρ(x ′)
δKρ(x)

dx ′ (16)

emerge, from which finally

δA[ρ]

δKρ(x)
= δA[ρ]

δρ(x)
− f (1)(ρ(x))

K

∫
f (ρ(x ′))

f (1)(ρ(x ′))
δA[ρ]

δρ(x ′)
dx ′. (17)

Following are some essential properties of K-conserving functional differentiation, arising
from equation (17) (or simply from equation (16) in some cases):

(i) For any K-conserving derivative,∫
f (ρ(x))

f (1)(ρ(x))

δA[ρ]

δKρ(x)
dx = 0. (18)

(ii) Besides equation (16),

δA[ρ]

δKρ(x)
=

∫
δA[ρ]

δKρ(x ′)
δρ(x ′)
δKρ(x)

dx ′ (19)

is also true, which can be considered as the analogue of

δA[ρ]

δρ(x)
=

∫
δA[ρ]

δρ(x ′)
δρ(x ′)
δρ(x)

dx ′. (20)

(iii) It is closely related to the nature of K-conserving functional differentiation that

δ{f (ρ(x ′))/
∫
f (ρ(x ′′)) dx ′′}

δKρ(x)
= δ{f (ρ(x ′))/

∫
f (ρ(x ′′)) dx ′′}

δρ(x)
. (21)
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(iv) Two (unconstrained) δ
δρ(x)

derivatives yield the same δ
δKρ(x)

derivative if and only if they

differ only by some f (1)(ρ(x))B[ρ],

δA′[ρ]

δρ(x)
− δA[ρ]

δρ(x)
= f (1)(ρ(x))B[ρ] (22)

with B[ρ] not depending on x, that is, a δ
δKρ(x)

derivative determines the δ
δρ(x)

derivative

only up to an additive f (1)(ρ(x))B[ρ]. Equation (22) is true if

A′[ρ] = A[ρ] + h(K). (23)

(v) K conservation spoils the symmetry of second δ
δρ(x)

derivatives in their x arguments, which
can be exhibited well by the commutator[

δ

δKρ(x)
,

δ

δKρ(x ′)

]
= −f (1)(ρ(x ′))

K

(
1 − f (ρ(x))f (2)(ρ(x))

f (1)2
(ρ(x))

)
δ

δρ(x)

+
f (1)(ρ(x))

K

(
1 − f (ρ(x ′))f (2)(ρ(x ′))

f (1)2
(ρ(x ′))

)
δ

δρ(x ′)

+
1

K2

(
f (1)(ρ(x))

f (ρ(x ′))f (2)(ρ(x ′))
f (1)(ρ(x ′))

− f (1)(ρ(x ′))
f (ρ(x))f (2)(ρ(x))

f (1)(ρ(x))

)∫
dx ′′ f (ρ(x ′′))

f (1)(ρ(x ′′))
δ

δρ(x ′′)
. (24)

Note that the symmetry is also broken if only one of the functional differentiations is
constrained, as was shown in [1] with the exchange-correlation kernel of time-dependent
density-functional theory.

(vi) For functionals composed from two functionals there are rules similar to those of
unconstrained functional differentiation, namely,

δ(A + B)

δKρ(x)
= δA

δKρ(x)
+

δB

δKρ(x)
(25)

δ(AB)

δKρ(x)
= δA

δKρ(x)
B + A

δB

δKρ(x)
(26)

and the chain rule

δA[b(x ′)]
δKρ(x)

=
∫

δA

δb(x ′)
δb(x ′)
δKρ(x)

dx ′. (27)

Giving an alternative possibility for the definition of a K-conserving functional derivative,
it can be shown that a δ

δKρ(x)
derivative is that part of a δ

δρ(x)
derivative that gives, for any

variation δρ(x), the (K-conserving) variation of a functional that is due to the K-conserving
part of δρ(x), δKρ(x), via

δKA[ρ] =
∫

δA[ρ]

δKρ(x)
δρ(x) dx (28)

where δKA[ρ] = A[ρ + δKρ] − A[ρ]. Considering that arbitrary variations of ρ(x) are
allowed in the integrand in equation (28), equation (28) can be a definition for the K-conserving
derivative of a functional, analogous to

δA[ρ] =
∫

δA[ρ]

δρ(x)
δρ(x) dx (29)
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for unconstrained derivatives. The basis for the justification of equation (28) is the
decomposition of a variation δρ(x) into a K-conserving and a remaining part,

δρ(x) = δKρ(x) + δK̄ρ(x). (30)

This can be achieved with the help of the two-variable functional ρ[g,K] defined by
equation (10), the full variation of which is given by

δρ[g,K] =
∫ (

δρ[g,K]

δg(x ′)

)
K

δg(x ′) dx ′ +

(
∂ρ [g,K]

∂K

)
g

∂K (31)

for g = ρ, yielding the desired decomposition equation (30); that is,

δKρ(x) =
∫ (

δρ(x)[g,K]

δg(x ′)

)
K

δg(x ′) dx ′
∣∣∣∣
g=ρ

=
∫ {

δ(x − x ′) − f (1)(ρ(x ′))
K

f (ρ(x))

f (1)(ρ(x))

}
δρ(x ′) dx ′ (32)

and

δK̄ρ(x) =
(

∂ρ(x) [g,K]

∂K

)
g

∂K

∣∣∣∣∣
g=ρ

= 1

K

f (ρ(x))

f (1)(ρ(x))
∂K (33)

the sum of which, of course, gives δρ(x) identically. Inserting equation (32) into

δKA[ρ] =
∫

δA[ρ]

δρ(x)
δKρ(x) dx (34)

implied by equation (29), and taking equation (11) and (16) (that is equation (12)) into
consideration, then leads to equation (28). Similarly, with the use of equation (33),

δK̄A[ρ] =
∫

δA[ρ]

δK̄ρ(x)
δρ(x) dx (35)

with
δA[ρ]

δK̄ρ(x)
= f (1)(ρ(x))

K

∫
f (ρ(x ′))

f (1)(ρ(x ′))
δA[ρ]

δρ(x ′)
dx ′ (36)

which is the other component of an unconstrained, that is, full derivative,
δA[ρ]

δρ(x)
= δA[ρ]

δKρ(x)
+

δA[ρ]

δK̄ρ(x)
. (37)

From equation (28), for the case of δKA[ρ] = 0 for any variation δKρ(x) of ρ(x), the
Euler equation

δA[ρ]

δKρ(x)
= 0 (38)

follows straight away, yielding, if A[ρ] has an unconstrained derivative,
δA[ρ]

δρ(x)
= λf (1)(ρ(x)) (39)

(with equation (6)), which can be obtained via equation (34) as well, considering∫
f (1)(ρ(x)) δρ(x) dx = 0. (40)

That equation (38) gives back just the usual Lagrange method, equation (39) with equation (6),
if A[ρ] has an unconstrained derivative, can be seen in the following way: from equation (38),
utilizing equation (17),

δA[ρ]

δρ(x)
= f (1)(ρ(x))

1

K

∫
f (ρ(x ′))

f (1)(ρ(x ′))
δA[ρ]

δρ(x ′)
dx ′ (41)
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arises, giving equation (39), the substitution of which for δA[ρ]
δρ(x)

into equation (41) to determine
the ρ(x) with the proper K,

λf (1)(ρ(x)) = f (1)(ρ(x))
1

K

∫
f (ρ(x ′))

f (1)(ρ(x ′))
λf (1)(ρ(x ′)) dx ′ (42)

gives the (K-conserving) constraint (6). Equation (39) also gives back equation (38), as
K-conserving differentiation cancels a c f (1)(ρ(x)) out (see property (iv) above).

Besides the simplest case of constraint (6), that is, number conservation, considered in
[1], the conservation of the entropy

S =
∫

−k ρ(x) ln ρ(x) dx (43)

gives another important example of constraint on functional differentiation. For this case
equation (17) yields

δA[ρ]

δSρ(x)
= δA[ρ]

δρ(x)
− ln ρ(x) + 1

S

∫ −k ρ(x ′) ln ρ(x ′)
ln ρ(x ′) + 1

δA[ρ]

δρ(x ′)
dx ′ (44)

the formula of entropy-conserving functional differentiation. (Note that x in the above formulae
can denote a set of variables, e.g., phase-space coordinates, as well.) To treat the ‘reverse’
problem in statistical physics [5], namely, differentiation of the entropy under conservation
constraints of statistical averages of dynamical functions, however, a slight generalization of
the derived formulae is necessary to include constraints of the form∫

f (ρ(x), x) dx = K (45)

where f has a direct dependence on x, as in
∫

ρ(x)H(x) dx = E, for example. To do this, the
x variable of f (ρ, x) can be handled as a parameter in the decomposition equation (10), that
is,

f (ρ, x) = fx(ρ) (46)

with which

ρ(x) = f −1
x

(
K∫

fx′(g(x ′)) dx ′ fx(g(x))

)
(47)

giving

δA[ρ]

δKρ(x)
= δA[ρ]

δρ(x)
− f (1)

x (ρ(x))

K

∫
fx′ (ρ(x ′))

f
(1)

x′ (ρ(x ′))

δA[ρ]

δρ(x ′)
dx ′. (48)

For time-dependent problems, an extension of equation (17) is needed to include
constraints with an external parameter, equation (7). In this case, the starting point in the
derivation is the decomposition

ρ(x, t) = f −1

(
K(t)∫

f (g(x ′, t)) dx ′ f (g(x, t))

)
(49)

of ρ(x, t), with the use of which

δA[ρ]

δKρ(x, t)
= δA[ρ]

δρ(x, t)
− f (1)(ρ(x, t))

K(t)

∫
f (ρ(x ′, t))

f (1)(ρ(x ′, t))
δA[ρ]

δρ(x ′, t)
dx ′ (50)

emerges as the formula for K(t)-conserving functional differentiation.
In summary, formula (17) for differentiation of functionals under conserving constraints

of the form (6), ‘K-conserving’ constraints, has been derived, together with the essential
properties (18)–(27) and an alternative definition for a K-conserving derivative, equation (28),
that is not related to an unconstrained derivative (and may be general for arbitrary constraints).
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Two extensions of equation (17), equations (48) and (50), have also been presented to include
important cases, for example, for statistical physics and to handle time-evolution.
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